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1 Prelims

The text works in three generalized spaces, Rn, Cn and Hn. As usual R is the set of real numbers
and Rn is the set of n-tuples with real-valued entries and Cn is similarly the set of n-tuples with
complex valued entries. The other space is pretty new; H = {a+ bi+ cj + dk : a, b, c, d ∈ R} is an
extension of the complex numbers where i2 = j2 = k2 = −1 and Hn is the usual n-tuple. I’ll follow
the incredible confusing but sometimes useful notation that Morton Curtis used and shorthand
k ∈ {R,C,H} with kn as the set of n-tuples.

2 Inner Products

In order to understand a little bit more about Orthogonal Groups, and to get through some topology
on Matrix Groups later on, we’ll need the concept of an inner product. The particular inner product
that we’re interested in is defined as follows:

Definition 1. For vectors x, y ∈ kn we define an inner product 〈x, y〉 :=
∑n

i=1 xiyi.

This inner product may seem intimidating, but if we’re looking at vectors in only Rn then it’s
just the usual dot product. The really nice property of the dot product is that for x ∈ Rn the
length of the vector, or the norm, is simply ‖x‖ =

√
x · x. This particular inner product generalizes

the dot product to both C and H while keeping the above definition of length to be a real number.
Due to the way that this inner product is defined, we can deduce a property of the inner product
that comes in handy when defining Orthogonal Groups.

Proposition 1. For all x, y ∈ kn, and A ∈ Mn(k) we have 〈xA, y〉 = 〈x, yAT 〉.

This fact is used very briefly later on, but we can actually turn our groups into metric spaces
by defining the metric dist(x, y) = ‖x− y‖ where x, y ∈ kn.

3 Orthogonal Groups

Definition 2. The Orthogonal Group, O(n, k), is the set of matrices A ∈ Mn(k) such that for
all x, y ∈ kn we have 〈xA, yA〉 = 〈x, y〉.

Applying Proposition 1 to the definition, 〈xA, yA〉 = 〈x, yAAT 〉 = 〈x, y〉, so we see that yAA
T

=

y or AA
T

= I. This is a definition that you may have seen before in a linear algebra or otherwise for
orthogonal matrices, but the inner product definition gives us some nice intuition on how matrices
in the Orthogonal Group act on vectors. Take x ∈ kn with A ∈ O(n, k), then ‖xA‖ =

√
〈xA, xA〉 =√

〈x, x〉 = ‖x‖ which is just the length of x. This means that the orthogonal group is the set of
matrices that preserves the length of a vector under transformation. In fact consider for x, y ∈ Rn

we have that cos(θ) = x·y
‖x‖‖y‖ where θ is the angle between the vectors. If we take A ∈ O(n,R),

then cos(θ) = 〈xA,yA〉
‖xA‖‖yA‖ = 〈x,y〉

‖x‖‖y‖ so that even the angle between the two vectors is preserved. We
will work with a few orthogonal groups in particular:
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Definition 3. The Orthogonal Group, O(n), is the set of matrices A ∈ Mn(R) such that
AAT = ATA = I. The subgroup of matrices A ∈ O(n) such that det(A) = 1 is called the
Special Orthogonal Group, SO(n).

The Unitary Group, U(n), is the set of matrices A ∈ Mn(C) such that AA
T

= A
T
A = I. The

subgroup of matrices A ∈ U(n) such that det(A) = 1 is called the Special Unitary Group,
SU(n).

The Symplectic Group, Sp(n), is the set of matrices A ∈ Mn(H) such that AA
T

= A
T
A = I.

Tangent Spaces and the Exponential Map

Another set of preliminaries here, we need to understand the concept of tangent spaces to matrix
groups, then we can use this to investigate the exponential and logarithm of a matrix, as well as
some interesting properties of the tangent space itself.

Definition 4. A curve on a vector space V is a continuous function γ from an open interval
(a, b) ∈ R to V .

Definition 5. We say that a curve γ on a vector space V is differentiable at a point c ∈ (a, b) if

lim
x→c

γ(x)− γ(c)

x− c

exists.

The idea of a curve on a matrix group may seem strange, but to make it a bit more concrete
we can look at an example of one. For t ∈ (−π, π) define

γ(t) =

[
cos(t) sin(t)
− sin(t) cos(t)

]
.

The first thing to note is for all t ∈ (−π, π), det(γ(t)) = 1 so that γ(t) is a curve on SO(2). The
derivative of γ(t) evaluated at 0 is

γ′(0) =

[
− sin(0) cos(0)
− cos(0) − sin(0)

]
=

[
0 1
−1 0

]
.

What we’re really trying to accomplish here is extend familiar results from calculus and vector
calculus to spaces these spaces of matrix groups, with curves on the matrix group playing the role
of a function on x.

Definition 6. The Tangent Space, T, to a matrix group, G, is the set of all tangent vectors γ′(0)
to curves γ : (a, b)→ G where γ(0) = I.

Proposition 2. T is a linear subspace of Mn(k).

Definition 7. (i) Matrix A ∈ Mn(R) is skew-symmetric if A+AT = 0.

(ii) Matrix A ∈ Mn(C) is skew-hermitian if A+AT = 0.

(iii) Matrix A ∈ Mn(H) is skew-symplectic if A+AT = 0.

Proposition 3. Let so(n) be the set of skew-symmetric matrices. Then so(n) is a subspace of
Mn(R).
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This result follows similarly for su(n) and sp(n), the set of skew-hermitian and skew-symplectic
matrices respectively. We’ll now prove a fairly straightforward result that is leads us part-way to
the goal of this presentation.

Theorem 1. Let γ(t) be a curve through O(n), then γ′(0) ∈ so(n).

Proof. We simply want to show here that if γ(t) is a curve through O(n) then it is implied that
γ′(0) + γ′(0)T = 0 so that γ′(0) ∈ so(n). By definition of an orthogonal matrix γ(t)γ(t)T = I.
Taking the derivative of both sides with respect to t using the usual product rule then evaluating
at 0 we have

γ′(0)γ(0)T + γ(0)γ′(0)T = 0.

Again by definition γ(0)T = γ(0) = I thus we have γ′(0) + γ′(0)T = 0 so that γ′(0) ∈ so(n). In
particular if γ(t) is a curve through SO(n) then γ′(t) is a curve through so(n) as well.

Definition 8. Let A ∈ Mn(R) and set

eA := I +A+
A2

2!
+
A3

3!
+ . . .

We say that this series converges if the sequence of partial sums converges for each of the n2

matrix entries.

Proposition 4. For any matrix A ∈ Mn(R), the series

eA = I +

∞∑
i=1

Ai

i!

converges.

Proof. Let m be the largest entry in the matrix A. Take matrix M defined as the n by n matrix
with all entries as m, then each entry in M2 will be nm2 and clearly aij ≤ nm2 where aij is an
arbitrary entry of A. Continue on in this way to see that the entries in Ak are bounded above by
nk−1mk in Mk, so it suffices to show that the exponential of M converges. Take the expansion
deduced above

1 +

∞∑
i=0

ni−1mi

i!
.

We can apply the ratio test to this series as follows:

lim sup
i→∞

∣∣∣∣ai+1

ai

∣∣∣∣ = lim sup
i→∞

∣∣∣∣nimi+1(i− 1)!

ni−1mii!

∣∣∣∣ = lim sup
i→∞

nm

i
= 0.

Thus we have that the radius of converge of the exponential function is infinite and eA converges
entry-wise for all A ∈ Mn(R).

Proposition 5. If the matrices A and B commute, then eA+B = eAeB.

Corollary 1. For any real n×n matrix A, eA is invertible.

Proposition 6. If A ∈ so(n) then eA is orthogonal.

Proof. By definition, A ∈ so(n)⇒ A+AT = AT +A = 0, then by Proposition 5 eA+AT
= eAeA

T
=

e0 = I. The exponential is defined entrywise, so eA
T

= (eA)T thus eA(eA)T = (eA)T eA = I so we
have our result, eA ∈ O(n,R).
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Definition 9. A set D ∈ Rn is path connected if: Given arbitrary x, y ∈ D there exists a
continuous function γ : [0, 1]→ D with γ(0) = x and γ(1) = y.

The concept of path connectedness gives us one really interesting result: SO(n) is path con-
nected, but O(n) is not!. In order to reach a contradiction assume that O(n) is in fact path
connected. Choose A ∈ SO(n), B ∈ O(n) − SO(n). By assumption O(n) is path connected, so
there exists a continuous function γ : [0, 1]→ O(n) such that γ(0) = A and γ(1) = B. Recalling a
fact from analysis, the composition of continuous functions is similarly continuous, so we are going
to now look at the continuous function h(t) = (det ◦ γ)(t), or the composition of the determinant
function with our path. Then the continuous image of a path connected space is path connected,
so there must be some A ∈ O(n) with determinant 0, which is clearly a contradiction.
Note: Won’t do this proof in full, just in case someone asks I wanted to have the full one available.

Proposition 7. The tangent space of SO(n) is so(n).

Proof. We’ve actually already proved the bulk of what is necessary here. We’ve shown that the
derivative of a curve through SO(n) is in fact an element of so(n), so all that is left to show is that
any curve in so(n) is tangent to some curve through SO(n) which will give us that the tangent space
of SO(n) is ALL of so(n). Take B ∈ so(n) to be arbitrary. Consider the map ρ : [0, 1] → SO(n)
where ρ(t) = etB. This map is a path between I and eB in SO(n). By path connectedness, for any
matrix etB we must have det(etB) = 1 thus we have our result.
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