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Inner Product

Definition
Let 2 be a vector space over scalar field F. A inner product on
Z " is a function (-,-) : 2" x & — F such that for all o, 5 in IF and

x,y,z in Z the following are satisfied:

(a) (x,y) ={y,x)
(b) (ax+ By, z) = alx, z) + By, z)

(c) {(x,x) =0
(d) (x,x) =0<=x=0
The norm, ||x|| = <x,x>%, induced by an inner product defines a

metric d(x, y) = ||x — y|| on vector space 2.
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Hilbert Space

Definition
A Hilbert space is a vector space .57 over [ with an inner product
(+,-) such that relative to the metric induced by the norm, J# is a

complete metric space.
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Hilbert Space

Example

Let / be a set, and let £2(/) be the set of all functions x : | — F
such that x(i) = 0 for all but a countable number of / and

Z Ix(1)|? < oo.
i€l

For x,y in £2(1) let

(x,y)=>_ x(i)y(i).

i

Then £2(1) is a Hilbert space.
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Definition
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I .

Proposition
A linear functional is bounded if and only if it is continuous.
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Bounded Linear Functionals

Proof (Bounded = Continuous).

» Let L: 2 — I be a bounded linear functional. Let v, h € 57
such that h # 0.

» Then
[L(v +h) = L(v)| = [L(h)| < c|h]
for some constant ¢ > 0.
» Therefore L is Lipschitz continuous.

» Lipschitz continuity implies continuity.
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The Riesz Representation Theorem

Theroem

If L: 57 — F is a bounded linear functional, then there is a unique

vector hg in 7 such that L(h) = (h, hg) for every h in .
Moreover, ||L|| = ||ho]|.
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Proposition
[2[a,b] = {f : [a,b] = F | [P|f(t)]2dt < o0} is a Hilbert space
with inner product given by

b
(F.g) = / F(1)a(e)dt.



Example: The Riesz Representation Theorem

Proposition
L2[a, b] = {f : [a,b] — F | [2|f(£)Pdt < o0} is a Hilbert space
with inner product given by

b
(F.g) = / F(1)a(e)dt.

Corollary

If F: L2[a, b] — F is a bounded linear functional, then there is a
unique hy in £2[a, b] such that

F(h) = / hhodt

for all h in L?[a, b].
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Orthogonality

Definition
For Hilbert space J# and f,g € ¢, f and g are orthogonal,
denoted f L g, if (f,g) =0.

Definition

An orthonormal subset of a Hilbert space 7 is a subset & such
that:

(a) ifel,ex €& and e; # ep, then ey L ex fore € &, |le| =1

(b) foree &, |le]| =1

Definition
A basis of .7Z is a maximal orthonormal set.
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Bases

Example
Let 2 = (2(i) as before. For each i € I, define ¢; in J# by
ei(i) =1and ej(j) =0 for i # j. Then {e; | i € I} is a basis.

Example
Let 2 = L2[0,27]. For n € Z define e, € J by e,(t) = \/%e"”t.
Then {e, | n € Z} is not only an orthonormal set, but also a basis

for 7.
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Bases for Infinite-Dimensional Spaces

Proposition
A basis for an infinite-dimensional Hilbert space is never a Hamel
basis.
Example
» Consider the space ¢2(N), with basis
{(1,0,0,...),(0,1,0,0,...),(0,0,1,0,...), ... }.

» We know

— = — < 0.
n? 6
n=1

111

» So (Tv 5 ) € 62(N).

» But this element can’t be written as a finite sum of basis
elements.
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Isomorphisms between Hilbert spaces

Definition
If 7 and ¢ are Hilbert spaces, an isomorphism between Z and
J is a linear surjection U : 5 — ¢ such that

(Uh, Ug) = (h,g)
for all h,g in 7.

Proposition
If linear map U is an isomorphism, then U is an isometry.
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Isomorphisms between Hilbert spaces

Theroem
Two Hilbert spaces are isomorphic if and only if they have the
same dimension.

Proof (Sketch).

» Let &,.7 be bases for Hilbert spaces 57, # respectively, such
that dim JZ = dim 7.
Construct an isomorphism from # to (?(&).
Do the same for # to (?(.F).
Since |&| = |.Z|, £2(&) must be isomorphic to ?(.F).
Conclude 47 is isomorphic to JZ .

v

v

v

v



Further Topics Covered

» Linear Operators on Hibert spaces
> Fourier series

» Sturm-Liouville systems



Texts Used
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A Course in Functional Analysis by John B. Conway

v

An Introduction to Hilbert Spaces based on the notes of
Rodica D. Costin

Introduction to Partial Differential Equations and Hilbert
Space Methods by Karl E. Gustafson

Ben Russo’s brain
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