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Overview

We will examine two numerical analysis techniques that can be used to
find numerical solutions to differential equations. The first method is finite
differences, and the second is the fast Fourier transform.

We obtain a system of algebraic equations through both of these
techniques, and use linear algebra to solve the resulting matrix.

Using finite differences, we obtain a very large matrix because finite
differences converge rather slowly. However, the good news is that it is
highly structured and usually very sparse, lending itself to effective
algorithms for the solution of sparse linear algebraic systems.

On the other hand, the fast Fourier transform is a method that converges
very quickly, producing small matrices.
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Finite Differences

The general idea behind finite differences is to replace derivatives with
linear combinations of discrete function values.

We will first think about finite differences in terms of sequences indexed by
all the integers.

z = {zk}k=∞
k=−∞ = ..., z−1, z0, z1, ...
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Finite Difference Operators

Let us first define some elementary difference operators, which map the
space RZ of all such sequences into itself.

The Shift Operator

(Ez)k = zk+1

Example: (E{z1, z2, z3, ...} = {z2, z3, z4, ...}
Essentially shifts a term forward to the next term.

The Forward Difference Operator

(∆+z)k = zk+1 − zk

That is, (∆+z) = z2 − z1

Difference between the next term and the current term
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More Finite Difference Operators

The Backward Difference Operator

(∆−z)k = zk − zk−1

That is, (∆−z) = z2 − z1

Difference between current term and the one before it

The Central Difference Operator

(∆0z)k = zk+ 1
2
− zk− 1

2
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More Finite Difference Operators

The Averaging Operator

(γ0z)k = 1
2 (zk− 1

2
+ zk+ 1

2
)

Note: The terms zk+ 1
2

and zk− 1
2

do not make much sense for a sequence

indexed by the integers, but when used appropriately, both the central
difference operator and the averaging operator can be well defined.
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The Differential Operator

Let us now assume that the sequence z is given by the sampling of a
function z at equispaced points. In other words, zk = z(kh) for some
constant h > 0.

Assuming that z is an entire function, meaning that z is a function that is
complex differentiable at every point, we can define the differential
operator as follows:

The Differential Operator

(Dz)k = z ′(kh)
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General Definitions of Finite Difference Operators

Our next goal is to express the differential operator in terms of the other
linear operators we have defined. In order to do this, we will formally
define general functions of finite difference operators.

Since we assumed that zk = z(kh), finite difference operators depend on
the parameter h.

Let

g(x) =
∞∑
j=0

ajx
j

be an arbitrary analytic function, expressed as its Taylor series.
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General Definitions of Finite Difference Operators

Noting that
E − I, γ0 − I,∆+,∆−,∆0, hD → 0

when h→ 0+ and where I is the identity, we can formally expand g about
E − I, γ0 − I, etc.

For example:

g(∆+)z = (
∞∑
j=0

aj∆
j
+)z =

∞∑
j=0

aj(∆j
+z)
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The E 1
2 Operator

E
1
2 represents the square root of the shift operator.

One potential interpretation of its meaning is that is a ”half-shift,”

meaning that (E
1
2 z)k = zk+ 1

2

We can also define this as z((k + 1
2 )h).

Definition of the E 1
2 Operator

(E
1
2 z)k = zk+ 1

2
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The E 1
2 Operator

Another interpretation uses the power series expansion of
√

1 + x since the

shift operator goes forward one term in the series z , and the E
1
2 operator

is the square root.

√
1 + x = 1 +

∞∑
j=1

((−1)j−1

22j−1

) (2j − 2)!

(j − 1)!j!
x j

implies that

Alternative Definition of the E 1
2 Operator

E
1
2 = I − 2

∑∞
j=1

(2j−2)!
(j−1)!j! [−1

4 (E − I)]j
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Expressing Operators as a Function of the Shift Operator

We will now express all finite difference operators in terms of the shift
operator E .

Since (Ez)k = zk+1 and (∆+z)k = zk+1 − zk ,
(∆+z)k = zk+1 − zk = (Ez)k − zk

Therefore,

Forward Difference Operator

∆+z = E − I

Similarly,

Backward Difference Operator

∆−z = I − E−1
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Expressing Operators as a Function of the Shift Operator

The definition of E
1
2 as a half-shift implies that

Central Difference Operator

∆0 = E
1
2 − E−

1
2

Averaging Operator

γ0 = 1
2 (E−

1
2 + E

1
2 )
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Expressing Operators as a Function of the Shift Operator
To express the differential operator in terms of the shift operator, we use
the Taylor theorem.

For any analytic function z it is true that

Ez(x) = z(x + h) =
∞∑
j=0

1

j!
[
d jz(x)

dx j
]hj

= [
∞∑
j=0

1

j!
(hD)j ]z(x)

= ehDz(x)

Differential Operator

D = 1
h lnE
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Superposition of Finite Difference Operators

All of the previously mentioned operators are linear operators.
Additionally, as they can be written in terms of E , all six of them
commute. Therefore when calculating the superposition of finite difference
operators, the order is not important.

For example,

∆+E2zk = ∆+(E(Ezk))

= ∆+(Ezk+1)

= ∆+zk+2

= zk+3 − zk+2
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Expressing D in terms of Other Operators

We will first invert the above formulae to express E in terms of other
operators.

Since ∆+ = E − I and ∆− = I − E−1

E = ∆+ + I = (I −∆−)−1
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Expressing D in terms of Other Operators

The expression involving ∆0 is a quadratic equation for E
1
2 .

(E
1
2 )2 −∆0E

1
2 − I = 0

After applying the quadratic formula, the solutions to this equation are

E
1
2 =

1

2
∆0 ±

√
1

4
∆2

0 + I

Therefore,

E = ( 1
2 ∆0 +

√
I + 1

4 ∆2
0)2

Xiaoran Tan (University of Connecticut) Introduction to Finite Differences and FFT Spring 2019 17 / 50



Expressing D in terms of Other Operators

Since hD = lnE , it follows that

The Differential Operator

D =
1

h
ln(I + ∆+)

= −1

h
ln(I −∆−)

=
2

h
ln(

1

2
∆0 +

√
I +

1

4
∆2

0)
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Approximation of the Differential Operator

As we are trying to approximate the differential operator D and its powers,
we can expand the above formulae using the Taylor series for the natural
log.

Using the formula for the differential operator in terms of the forward
difference operator

D =
1

h
ln(I + ∆+)

=
1

h
[∆+ −

1

2
∆2

+ +
1

3
∆3

+ +O(∆4
+)]

=
1

h
(∆+ −

1

2
∆2

+ +
1

3
∆3

+) +O(h3), h→ 0

Where we estimate ∆+ = O(h), h→ 0
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Approximation of the Differential Operator

If we apply this process s times, we get an expression for the sth
derivative, where s = 1, 2, 3, ...

Ds =
1

hs
[∆s

+ −
1

2
s∆s+1

+ +
1

24
s(3s + 5)∆s+2

+ ] +O(h3), h→ 0

This means that the linear combination

1

hs
[∆s

+ −
1

2
s∆s+1

+ +
1

24
s(3s + 5)∆s+2

+ ]zk

of the s + 3 grid values zk , zk+1, ..., zk+s+2 is an approximation for the sth
derivative of z(kh) up to O(h3)

If we use only two terms instead of three, we would obtain order O(h2),
and expanding the series further would lead to higher order.
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Approximation of the Differential Operator

We can also approximate the derivative using the backward difference
operator, using grid points that lie all to the left. However, we would like
to match the number of points on the left and right sides. Therefore we
would now like to approximate the derivative using the central difference
operator.

The problem with using the central difference operator is that ∆0z is not a
proper grid sequence. As we noted before, terms like zk+ 1

2
do not make

much sense for a sequence indexed by the integers.

However, even powers of ∆0 map the set of grid sequences to itself.

∆2
0zn = zn−1 − 2zn + zn+1

Xiaoran Tan (University of Connecticut) Introduction to Finite Differences and FFT Spring 2019 21 / 50



Expressing the Differential Operator in terms of the
Central Difference Operator
As we know, D = 2

h ln( 1
2 ∆0 +

√
I + 1

4 ∆2
0)

In order to obtain an expansion of this expression, let us consider the
function g(K) = ln(K +

√
1 +K2).

The Taylor expansion for this function is

g(K) = 2
∞∑
j=0

(−1)j

2j + 1

(
2j

j

)
(

1

2
K)2j+1

D =
2

h
g(

1

2
∆0)

=
4

h

∞∑
j=0

(−1)j

2j + 1

(
2j

j

)
(

1

4
∆0)2j+1
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Expressing the Differential Operator in terms of the
Central Difference Operator

Unfortunately, the expression we obtained for D contains only odd powers
of ∆0. In order to obtain even powers of ∆0, we can raise the expression
to an even power.

Even Derivatives

D2s = 1
h2s [(∆2

0)s − s
12 (∆2

0)s+1 + s(11+5s)
1440 (∆2

0)s+2 −
s(382+231s+35s2)

362880 (∆2
0)s+3] +O(h8), h→ 0

Therefore, the linear combination

1

h2s
[(∆2

0)s − s

12
(∆2

0)s+1 +
s(11 + 5s)

1440
(∆2

0)s+2]zk

approximates d2sz(kh)
dx2s to O(h6).
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Approximations of Odd Derivatives

The expansion described above only works for approximating even
derivatives. In order to use the central difference operator to approximate
odd derivatives, we will first express the averaging operator in terms of the
central difference operator.

Since (γ0z)k = 1
2 (E

1
2 + E−

1
2 ) and ∆0 = E

1
2 − E−

1
2

We can write
4γ2

0 = E + 2I + E−1

∆2
0 = E − 2I + E−1

And after some calculations, obtain

γ0 = (I +
1

4
∆2

0)
1
2
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Approximations of Odd Derivatives

Now we will write the identity I in terms of γ0 and ∆0.

I = γ0(γ−1
0 )

= γ0(I +
1

4
∆2

0)−
1
2

And now we will raise the original expansion of D using ∆0 to an odd

power, before multiplying by I = γ0(I + 1
4 ∆2

0)−
1
2 . This gives us

Odd Derivatives

D2s+1 =
1

h2s+1 (γ0∆0)[(∆2
0)s− 1

12 (s+2)(∆2
0)s+1+ 1

1440 (s+3)(5s+16)(∆2
0)s+2]+O(h5)

where h→ 0

which is the recommended approximation of odd derivatives.

Xiaoran Tan (University of Connecticut) Introduction to Finite Differences and FFT Spring 2019 25 / 50



The Poisson Equation

The Poisson equation is a partial differential equation given by

The Poisson Equation

∇2u = f , (x , y) ∈ Ω

where

∇2 =
∂2

∂x2
+

∂2

∂y2

f = f (x , y) is a known continuous function and the domain Ω ⊂ R is
bounded, open and connected and has a piecewise-smooth boundary.

We will also assume the boundary condition

u(x , y) = φ(x , y), (x , y) ∈ ∂Ω

In this case, ∂Ω denotes the boundary of the domain, and φ is a given
function.
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Using Grid Points

When using finite differences, we must always inscribe a grid onto the
domain. We will now impose onto onto clΩ a square grid Ω∆x parallel to
the axes with squares of side length ∆x .

Basically, we will choose ∆x > 0, (x0, y0) ∈ Ω and let Ω∆x be the set of
all points (x0 + k∆x , y0 + l∆x) inside the closure of Ω.

For convenience, we will notate the grid point (x0 + k∆x , y0 + l∆x) as the
(k , l)th grid point.

For every grid point (k, l) that lies within Ω, we will let uk,l represent the
approximation to the solution u(x0 + k∆x , y0 + l∆x) of the Poisson
equation at that point.

We do not need to approximate the solution at any of the boundary points
because their solutions are given by our boundary condition.
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Types of Points

We will be using a formula that involves a linear combination of the five
values uk,l , uk±1,l , uk,l±1. This formula is only usable if the immediate
horizontal and vertical neighbors (k , l) lie within Ω.

Let us define such a point u(x0 + k∆x , y0 + l∆x) as an internal point.

A boundary point is a point that lies on ∂Ω and whose value is given by
the boundary condition.

A near-boundary point is any other point inside clΩ. We cannot use finite
differences to approximate the solutions to the PDE at these points.
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Derivation of the Five-Point Formula

Suppose (k, l) corresponds to an internal point. We will use central
differences in order to approximate its solution.

Let v = v(x , y), (x , y) ∈ clΩ, be an arbitrary sufficiently smooth function.
Then at every internal grid point,

∂2v

∂x2
=

1

(∆x)2
∆2

0,xvk,l +O((∆x)2)

∂2v

∂y2
=

1

(∆x)2
∆2

0,yvk,l +O((∆x)2)

where vk,l is the value of v at the (k , l)th grid point.

This comes directly from the formula for finding even derivatives with the
central difference operator we obtained earlier.

Xiaoran Tan (University of Connecticut) Introduction to Finite Differences and FFT Spring 2019 29 / 50



Derivation of the Five-Point Formula

We now see that
1

(∆x)2
(∆2

0,x + ∆2
0,y )

approximates ∇2 to order O((∆x)2).

This means that we can rewrite the Poisson Equation as

1

(∆x)2
(∆2

0,x + ∆2
0,y )uk,l = fk,l

at every internal grid point (k, l).

If we expand this by applying the operators, we obtain

The Five-Point Formula

uk−1,l + uk+1,l + uk,l−1 + uk,l+1 − 4uk,l = (∆x)2fk,l
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Using the Five-Point Formula

So now instead of the original Poisson equation, we have a linear
combination of the values of u at an internal grid point and the points
immediately neighboring it.

Thus, the equation links five values of u in a linear fashion. However,
unless any of the points lie on the boundary, their values are unknown.

We will now use the five-point formula to assign a linear equation to every
internal grid point. This will give us a system of linear equations whose
solution is our approximation uk,l .
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Fast Fourier Transform

As we said before, the fast Fourier transform is a method that converges
quickly, requiring a smaller number of parameters. This results in a small
matrix.

Before we begin looking at this method, we must first look at the
approximation of functions.

We will use a Fourier series in order to approximate functions. The Fourier
approximation is defined as follows:

Fourier Approximation

f (x) ≈ ϕN(x) =
∑N

2

n=−N
2

+1
fne

iπnx

Where fn = 1
2

∫ 1
−1 f (τ)e−iπnτdτ, n ∈ Z
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The de la Valée Poussin Theorem

If the function f is Riemann integrable and fn = O(n−1) for |n| � 1 then
ϕN(x) = f (x) +O(n−1) as n→∞ for every point x ∈ (−1, 1) where f is
Lipschitz.

Lipschitz Functions

If a function is Lipschitz, there exists a real number such that, for every
pair of points on the graph of this function, the absolute value of the slope
of the line connecting them is not greater than this real number; the
smallest such bound is called the Lipschitz constant of the function.

Note that if f is smoothly differentiable then, integrating by parts,

fn = −(−1)n

2iπn
[f (1)− f (−1)]− 1

2iπn
f ′n = O(n−1), |n| � 1
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The Importance of Periodicity

Since such a function f is Lipschitz in (1, -1), ϕN converges to f there.
However, unless f is periodic, it fails to converge to the correct values near
the endpoints. Additionally, the convergence of O(n−1) is very slow.

However, when f is periodic, the Fourier approximation converges
extremely quickly.

Suppose that f is an analytic function on [−1, 1] that can be extended
analytically to a closed complex domain Ω such that [−1, 1] ⊂ Ω.
Additionally, f is periodic with period 2.

Therefore f (m)(−1) = f (m)(1) for all m = 0, 1, ....
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The Importance of Periodicity

We will again perform the integration, but this time we get

fn = − 1

2πin
f ′n = (− 1

2πin
)2f ′′n = (− 1

2πin
)3f ′′′n = ...

Therefore,

fn = (− 1

2πin
)mf

(m)
n , m = 0, 1, ...
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The Error Bound of the Fourier Approximation

How large is |f (m)|? Let γ be the positively oriented boundary of Ω. The
Cauchy theorem of complex analysis says that

f (m)(x) =
m!

2πi

∫
γ

f (z)dz

(z −m)m+1
, x ∈ [−1, 1]

After some steps, it follows that we can bound

f
(m)
n ≤ cm!αm, m = 0, 1, ..., for some c > 0

. From this we can deduce that

|ϕn(x)− f (x)| ≤ 3cm!(
α

πN
)m
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The Error Bound of the Fourier Approximation

According to the Stirling formula,

m! ≈
√

2πmm+1/2e−m

Therefore we have
m!(

α

πN
)m ≈

√
2πm(

αm

πeN
)m

which becomes very small for large N.

This means that the error |ϕN − f | decays faster than O(N−p) for any
p = 1, 2, ...

A rate of convergence of O(N−p) corresponds to order p, we say that the
Fourier approximation of analytic periodic functions is of infinite order.
This rapid convergence has a special name: we say that ϕN tends to f at
spectral speed.
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The Algebra of Fourier Expansions

Let us denote by A the set of all complex-valued functions f that are
analytic in [−1, 1] and can be extended analytically into the complex plane.

Suppose f , g ∈ A and a ∈ C. Then f and g can be denoted with their
convergent Fourier expansion as follows:

f (x) =
∞∑

n=−∞
fne

iπnx , g(x) =
∞∑

n=−∞
gne

iπnx
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The Algebra of Fourier Expansions

Addition of Fourier Expansions

f (x) + g(x) =
∑∞

n=−∞(fn + gn)e iπnx

Multiplication by a Constant

af (x) =
∑∞

n=−∞ afne
iπnx

Multiplication of Fourier Expansions

f (x)g(x) =
∑∞

n=−∞(
∑∞

m=−∞ fn−mgn)e iπnx

Derivatives of Fourier Expansions

f ′(x) = iπ
∑∞

n=−∞ nfne
iπnx
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The Fast Fourier Transform

Let N be a positive integer and denote by ΠN the set of all complex
sequences x = {xj}∞j=−∞ which are periodic with period N, j ∈ Z.

ΠN is a linear space of dimension N over the complex numbers C.

Let ωN = e2πi/N be the Nth primitive root of unity.

The Primitive Root of Unity of Degree N

ωN = e2πi/N
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Discrete Fourier Transform

A discrete Fourier transform (DFT) is a linear mapping FN defined for
every x ∈ ΠN by

Discrete Fourier Transform

y = FNx where yj = 1
N

∑N−1
`=0 ω−j`N x`, j ∈ Z

The DFT defined above has some special properties. First, FN maps ΠN

into itself.

The mapping is also invertible and its inverse is given by

x = F−1
N y where x` =

1

N

N−1∑
`=0

ωj`
Nyj , ` ∈ Z

Additionally, FN is an isomorphism of ΠN onto itself.
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Evaluation of the DFT

At first glance, the evaluation of the DFT requires O(N2) operations. This
is because, owing to periodicity, it is obtained by multiplying a vector in
CN by a N × N complex matrix. However, the number of operations can
be greatly reduced.

Let us assume that N = 2n, where n is a nonnegative integer. We will also
replace FN by the mapping F∗N = NFN . If we can compute F∗Nx cheaply
then just O(N) operations will turn the result into FNx.

Let us define, for every x ∈ ΠN , ”even” and ”odd” sequences

x[e] := {x2j}∞j=−∞ and x[o] := {x2j+1}∞j=−∞
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Evaluation of the DFT

Since x[e], x[o] ∈ ΠN/2, we can make the mappings

y[e] = F∗N/2x
[e] and y[o] = F∗N/2x

[o]

And find that

yj = y
[e]
j + ω−j`2n y

[o]
j for j = 0, 1, ..., 2n − 1

This means that if y[e] and y[o] are already known, we can synthesize them
into y in O(N) operations.
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Evaluation of the DFT

We can reduce the number of operations even further by using the identity
ω−s2s = −1 if s ≥ 1.

yj = y
[e]
j + ω−j2n y

[o]
j

yj+2n−1 = y
[e]
j+2n−1 + ω−j−2n−1

2n y
[o]
j+2n−1 = y

[e]
j − ω

−j
2n y

[o]
j

This means we only need to calculate 2n−1 products ω−j2n y
[o]
j and then

subtract them from y
[e]
j for j = 0, 1, ..., 2n−1.

Similarly, we can find y[e] by splitting it into ”odd” and ”even” sequences
again. Then we can obtain y[e] from two transforms of length N

4 .

This process can be repeated until we reach transforms of unit length.
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Implementation of FFT

The fast Fourier Transform begins with transforms of unit length and
builds them up from there.

Assuming that N = 2n as we did previously, we begin with 2n transforms
of length 1 and synthesize them into 2n−1 transforms of length 2.

These are then combined into 2n−2 transforms of length 22, which are
combined into 2n−3 transforms of length 23, and so on, until we reach a
single transform of length 2n, which is what we wanted in the first place.

This way, the cost of the FFT is N log2N operations, which is much faster
than the original O(N2) operations.
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Spectral Methods

Spectral methods are useful because of the following phenomena:

The spectral convergence of Fourier expansions of analytic periodic
functions,

The spectral convergence of a discrete Fourier transform approximation to
Fourier coefficients of analytic periodic functions,

And the low-cost calculation of a DFT by the fast Fourier transform.
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Second-Order Elliptic PDEs

Let us now use the fast Fourier transform to solve the Poisson equation.
The special structure of a Poisson equation with periodic boundary
conditions actually confers an advantage to spectral methods.

Specifically, consider the Poisson equation

∇2u = f , −1 ≤ x , y ≤ 1

where the analytic function f obeys the periodic boundary conditions
f (−1, y) = f (1, y),−1 ≤ y ≤ 1 and f (x ,−1) = f (x , 1),−1 ≤ x ≤ 1.

We also have the periodic boundary conditions

u(−1, y) = u(1, y), ux(−1, y) = ux(1, y), −1 ≤ y ≤ 1

u(x ,−1) = u(x , 1), uy (x ,−1) = uy (x ,−1), −1 ≤ x ≤ 1
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Solution to Poisson Equation

We will also stipulate the normalization condition that∫ 1

−1

∫ 1

−1
u(x , y)dxdy = 0

We have the two-dimensional Fourier expansion

f (x , y) =
∞∑

k=−∞

∞∑
`=−∞

fk,`e
iπ(kx+`y)

And want to find the Fourier expansion of u

u(x , y) =
∞∑

k=−∞

∞∑
`=−∞

uk,`e
iπ(kx+`y)

Xiaoran Tan (University of Connecticut) Introduction to Finite Differences and FFT Spring 2019 48 / 50



Solution to Poisson Equation

Because of the normalization condition, u0,0 = 0.

Therefore

∇2u(x , y) = −π2
∞∑

k=−∞

∞∑
`=−∞

(k2 + `2)uk,`e
iπ(kx+`y)

which implies that

uk,` = − 1

(k2 + `2)π2
fk,` k , ` ∈ Z, (k, `) 6= (0, 0)
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Solution to Poisson Equation

We have obtained the Fourier coefficients of the solution explicitly, without
needing to solve linear algebraic equations. This is because we have
recreated numerically the technique of separation of variables.

The functions ϕk,`(x , y) = e iπ(kx+`y) are eigenfunctions of the Laplace
operator, ∇2ϕk,` = −π2(k2 + `2)k,` and they obey periodic boundary
conditions.
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