An introduction to computability:
an excerpt from my DRP with Noah Hughes

Tristan Knight
tristan.knight@uconn.edu
University of Connecticut

Apr. 28, 2017

University of Connecticut
DRP Seminar


mailto:tristan.knight@uconn.edu

My book

; o
STUDENT WATEMATICAL LISRARY
ek &1

L3 Computability
& Theory

3 Rebecea Weber

If | can program my computer to execute a function, to
take any input and give me the correct output, then that
function should certainly be called computable.



What is computability?

» Computability is the ability to solve a problem.
» A computable problem should have a list of steps that can be
followed to solve it.
» Computability theory is the mathematical treatment of
computability.
» Mathematical interpretations of complexity, algorithms, and so
forth.



What is computability?

» Computability is the ability to solve a problem.

» A computable problem should have a list of steps that can be
followed to solve it.

» Computability theory is the mathematical treatment of
computability.
» Mathematical interpretations of complexity, algorithms, and so
forth.

Issue: How do we make such a general concept rigorous?



Some prior definitions

Definition: A partial function on N is a function whose domain is
a subset of N.
Definition: A total function on N is a function with domain N.



Some prior definitions

Definition: A partial function on N is a function whose domain is
a subset of N.
Definition: A total function on N is a function with domain N.

Definition: A partial function f halts on a natural number x if x is
in the domain of f.



Turing machines

A Turing machine is the “simplest” computer, and is our first
example of a definition for computable functions.



Turing machines

A Turing machine is the “simplest” computer, and is our first
example of a definition for computable functions.

A Turing machine is defined in terms of the following:

» States: {qo,q1,.--,qn}-

» Finite alphabet: e.g. {,0,1}.
» Infinite tape, divided into sections.
» “Read-write head” that can:
» Read the current section.
» Change the symbol on the tape.
» Move left or right on the tape.
» Finite set of instructions.



Turing machine: example

Alphabet: {*,0,1}

States: {qo, g1}

Instructions:

> <q0707*7q1>
> <q0713*7q1>
> <q17*7 Ra CIO>

Starting tape: {...,*,%,1,0,1,0,1,%,%,...}



Primitive recursion

Definition: The class of primitive recursive functions is the
smallest class C such that

1.

Constant function: 0(x) =0 is in C.

2. Succesor: S(x) =x+1lisinC.
3.
4

. Function composition: substitution of functions in C for the

Projection: P7(x1,x2,...,Xi,...,Xp) = X; is in C.

variables of a function in C produces a function in C.
Recursion: if g, h € C, then the function f given by

» (X1, y X0, 0) = h(x1,...,%5)

> (X1, Xny + 1) = h(x1, .. X, Y, F(X1, o X0, ¥))
isin C.



Primitive recursion (example)

We show f(x,y) = x + y is primitive recursive.



Primitive recursion (example)

We show f(x,y) = x + y is primitive recursive.

Note: We wil use the notation +(x, y) to refer to x + y as it
meshes much better with the notation used in the definition of
primitive recursion.

Proof.
Define +(x, y) as follows:
> +(x,0) = Pi(x)
> 06y +1) = S(P(x,y, +(x,)))-
By our definition of primitive recursion, +(x,y) = x+y is
primitive recursive.



Primitive recursion (another example)

We show f(x, y) = x X y is primitive recursive.



Primitive recursion (another example)

We show f(x, y) = x X y is primitive recursive.
Proof.
Define x(x, y) as follows:
> x(x,0) = Pi(x)
> X (x,y +1) = +(P3(x,y, x(x,¥)), PE(x, y, x(x, ¥)))-

By our definition of primitive recursion, x(x,y) = x X y is
primitive recursive.



Shortcomings of primitive recursion

The primitive recursive functions were supposed to describe the
computable functions.

However, in the early 1920s the mathematician Wilhelm
Ackermann defined what is now known as the Ackermann function,
which is computable but not primitive recursive.l

'http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PPN=
PPN235181684_0099&DMDID=DMDLOG_0009


http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PPN=PPN235181684_0099&DMDID=DMDLOG_0009
http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PPN=PPN235181684_0099&DMDID=DMDLOG_0009

Ackermann function

The Ackermann function is defined as follows:
n+1, m=20

A(m,n) = ¢ A(m—1,1), m>0and n=0
A(m—1,A(m,n—1)), m>0andn>0.



Ackermann function

The Ackermann function is defined as follows:

A(m,n) =

n—+1,
A(m - 1) 1)a

A(m—1,A(m,n—1)),

m=20
m>0and n=0
m>0and n> 0.



Ackermann function (cont)

» The Ackermann function is (total) computable, but not
primitive recursive.

» It can be shown that the definition of recursion for partial
recursive function puts a limit on how "fast” they can grow;
the Ackermann function grows faster than any primitive
recursive function.



What now?

So we've learned that the primitive recursive functions do not
encompass all of the computable functions.

Fortunately, only a small addition is needed to fix this.



Unbounded search

We introduce a sixth type of function, and call the smallest class of
functions that satisfy the primitive recursive rules and the following
rule the partial recursive functions:

6. Unbounded search (u-recursion): If X(x1,...,x,,0(X,y)) is a
partial recursive function of n+ 1 variables, and we define
1(X) to be the least y such that (X, y) = 0 and 6(x, z) is
defined for all z < y, then ¢ is a partial recursive function of
n variables.



The notation is dumb, not you

The definition given before is dfficult to parse and phrased
unintuitively. Additionally, the precise definition is unimportant for
our purposes.So, we summarize it below:



The notation is dumb, not you

The definition given before is dfficult to parse and phrased
unintuitively. Additionally, the precise definition is unimportant for
our purposes.So, we summarize it below:

6 tells us that, given a partial recursive function, there is a function
(1y) (read "the least”) that can tell you the least y at which some
relation on f holds.

For example, (uy)(y +5 > 8) = 4), while (uy)(y +5 < 3)
diverges.

Note that unbounded search allows for partial functions, something
which primitive recursion did not.



Coding

Although we've only used functions on the natural numbers so far,
we are not quite limited to them.

A coding function is a computale bijection between N and some
set S.

Sets that can be coded into the natural numbers are called
effectively countable.



Coding

Although we've only used functions on the natural numbers so far,
we are not quite limited to them.

A coding function is a computale bijection between N and some
set S.

Sets that can be coded into the natural numbers are called
effectively countable.

Turing machines can compute with coded input by either:
» Decoding the input, and running the computation on that, or

» Computing on the coded input, and return coded output.



Some coding functions

> (x,y) = %(X2 + 2xy 4+ y? 4+ 3x + y) is known as the pairing
function.

» The function 7 codes the set of all finite subsets of natural
numbers to the natural numbers. It is given by

T UNk — N
k>0
7(0) =0,

7_(317 . ak) — 231+231+a2+1+231+az+a3+2+, X ,_|_2a1+~-~+ak+k—1_



Coding Turing machines

It turns out that the set of all Turing machines is effectively
countable!

In short, we can use the pairing function to code the quadruples,
and 7 to code the sets of natural numbers, and then "squeeze” the
codes together.

It is important to note that this is only one of many bijections
between the Turing machines and N.



Coding Turing machines

It turns out that the set of all Turing machines is effectively
countable!

In short, we can use the pairing function to code the quadruples,
and 7 to code the sets of natural numbers, and then "squeeze” the
codes together.

It is important to note that this is only one of many bijections
between the Turing machines and N.

Not every number coded this way corresponds to a Turing
machine; there will be a lot of useless codes.
However, every Turing machine is given by a code.



Coding Turing machines (cont)

We call the method we use to encode the Turing machines an
enumeration.

The number assigned to a Turing machine by a fixed enumeration
is called the index of that Turing machine.



Padding Lemma

One consequence of enumeration is the Padding Lemma.

As we saw before, there are many indexes which don't encode
functional Turing machines.

However, the Padding Lemma states that, given any index of a
Turing machine M, there is a larger index which codes a machine
that computes the same function as that computed by M.



A universal Turing machine

From the enumeration of the Turing machines and the pairing
function, we can define what is known as a universal Turing
machine, given by

U((e, x)) = @e(x);

where ¢, is the eth Turing machine in our enumeration.



A universal Turing machine

From the enumeration of the Turing machines and the pairing
function, we can define what is known as a universal Turing
machine, given by

U((e, x)) = @e(x);
where ¢, is the eth Turing machine in our enumeration.
This function can replicate every other Turing machine. Again, by

the Padding Lemma, there are infinitely many universal Turing
machines.



“Wait! you missed something!”

Good question: “But wait! Are the partial recursive functions the
computable functions?”



“Wait! you missed something!”

Good question: “But wait! Are the partial recursive functions the
computable functions?”

Good answer: “Yes."



“Wait! you missed something!”

Good question: “But wait! Are the partial recursive functions the
computable functions?”

Good answer: “Yes."

Another good question: “l thought the Turing machines were
equivalent to the computable functions?”



“Wait! you missed something!”

Good question: “But wait! Are the partial recursive functions the
computable functions?”

Good answer: “Yes."

Another good question: “l thought the Turing machines were
equivalent to the computable functions?”

Another good answer: “That they are.”



Church-Turing Thesis

Alan Turing and his advisor Alonzo Church conjectured that the
class of Turing computable functions and the class of partial
recursive functions are one and the same.?

There are many models ouf computability, in fact:
» Lambda calculus
> Register machines

» Nondeterministic Turing machines

2
https:

//webspace.princeton.edu/users/jedwards/Turing},20Centennialy,

202012/Mudd’20Archive%20files/12285_AC100_Turing_1938.pdf


https://webspace.princeton.edu/users/jedwards/Turing%20Centennial%202012/Mudd%20Archive%20files/12285_AC100_Turing_1938.pdf
https://webspace.princeton.edu/users/jedwards/Turing%20Centennial%202012/Mudd%20Archive%20files/12285_AC100_Turing_1938.pdf
https://webspace.princeton.edu/users/jedwards/Turing%20Centennial%202012/Mudd%20Archive%20files/12285_AC100_Turing_1938.pdf

Noncomputable functions

We define the halting function as follows:

h(x) {1 if ©x(x) halts

0 if px(x) does not halt.



Noncomputable functions

We define the halting function as follows:

1 if oy hal
h(x) | ©x(x) halts
0 if px(x) does not halt.

To show that h is not computable, we define the following function:

F(x) = ox(x)+1 ifh(x)=1
1 if h(x) = 0.



Noncomputable functions (cont)

Notice that if h is computable, then f must be as well. However,
for every possible index x,

f = px.

So f is not on the list of computable functions, meaning f is not
computable. Thus, the halting function h is not computable.



What next?

» Parameterization
» Recursion theorem

» Applications



References

[1] Rebecca Weber, Computability theory, Student Mathematical Library,
American Mathematical Society, Providence, RI, 1977. MR2920681



Thank you!



