
Finite Element Analysis

Josh Greenberg

University of Connecticut

4/22/2021



Textbook

The Finite Element Method: Theory, Implementation, and
Applications
Larson, Mats G., Bengzon, Fredrik



Table of Contents

1. Required Background Knowledge
-Basis of an abstract vector space
-Matrix Operations
-Methods of estimating definite integrals

2. Key ideas to be learned
-Advanced methods of estimating functions
-Converting a differential equation into an integral equation
-Converting a calculus problem into a linear algebra problem
-Algorithms for assembling a matrix in MATLab

3. Using Finite Element Analysis to solve differential equations
-One Dimension
-Two Dimensions
-Time dependence



Basis of an abstract vector space

We are estimating solutions of differential equations on a finite
interval, or a finite region of R2. The estimation will consist of
piecewise-continuous linear functions. We need a basis to represent
those functions.



Estimating Functions

The simplest way to estimate a function is to use a point on the
function and place a line segment on that point that connects to
the next point of the function.



L-2 Projection

The L-2 projection method is better, but it is much harder to
construct
It is also much more grounded in linear algebra



L-2 Projection Cont

Notice that f − Phf is orthogonal to the entire span of Vh (i.e. the
span of the hat functions)

Therefore, the dot product with any linear combination of hat
functions is zero

Since we are working with functions, we need the integral form of
the dot product∫
I (f − Phf )φidx = 0, i = 0, 1, 2, ..., n

This condition is how we will construct the L-2 projection



The most important derivation

The equation in the previous slide implies that∫
I f φidx =

∫
I Phf φidx

Phf is the projection, so it is a linear combination of the hat
functions.

Therefore, it follows that Phf =
∑n

j=0 αjφj

We interchange the sum and the integral to get,∫
I f φidx =

∑n
j=0 αj

∫
I φjφidx , i = 0, 1, ..., n



The most important derivation cont.

Let the matrix Mij =
∫
I φjφidx , i , j = 0, 1, ..., n

Let the vector b =
∫
I f φidx i = 0, 1, ..., n

It follows that the equation in the previous slide is equivalent to
the matrix equation in (n + 1) dimensions,
Mα = b



Back to the L-2 Projection

Now that we have the matrix equation, we need to extract
patterns to implement this into MATLab

M isn’t actually so complicated

The picture shows that only the adjacent hat functions have a
nonzero contribution to the integral of their product over the
interval I
Therefore, the only nonzero entries of M are Mii , Mi ,(i+1),M(i+1),i



Back to the L-2 Projection cont

Mii =
∫
I φiφidx , =

∫ xi
xi−1

φiφidx +
∫ xi+1

xi
φiφidx

These integrals can be estimated using whichever technique
(rectangles, trapezoids, etc) works best for the given situation.

If we use Simpson’s rule, the integral works out to be hi
3 + hi+1

3
i = 1, ..., n − 1

For i = 0 and i = n, the integral turns out to be h1
3 and hn

3 ,
respectively



Back to the L-2 Projection cont

For Mi+1,i , and Mi ,i+1 the integral only runs over one sub interval.

Repeating the procedure in the last slide, we get that Mi+1,i and
Mi ,i+1 both equal hi+1/6, i = 0, ..., n

If all this is confusing, the final picture is this matrix:



Back to the L-2 Projection cont

Now we tackle how to assemble this in MATLab. We extracted the
pattern from the matrix. Now we run this algorithm:

function M = MassAssembler1D(x)
n = length(x)-1; (number of subintervals)
M = zeros(n+1,n+1); (allocate mass matrix)
for i = 1:n (loop over subintervals)
h = x(i+1) - x(i); (interval length)
M(i,i) = M(i,i) + h/3; (add h/3 to M(i,i))
M(i,i+1) = M(i,i+1) + h/6;
M(i+1,i) = M(i+1,i) + h/6;
M(i+1,i+1) = M(i+1,i+1) + h/3;
end



Back to the L-2 Projection cont

We will use a similar technique to compute the vector
b =

∫
I f φidx i = 0, 1, ..., n

In this case, f is the function we are trying to project and estimate,
so it is known.
We estimate the integrals using whatever technique we wish, and
we extract a similar pattern to implement into another for-loop
into MATLab.
As an example,



Back to the L-2 Projection cont

Finally, we use this algorithm to put it all together and generate
the L-2 Projection:
function L2Projector1D()
n = 100; number of subintervals
h = 2*pi/n; mesh size
x = 0:h:2*pi; mesh
M = MassAssembler1D(x); assemble mass
b = LoadAssembler1D(x,y.*sin(y)); assemble load
Pf = M/b; solve linear system
plot(x,Pf) plot L2projection



Back to the L-2 Projection cont





Solving a Differential Equation

Consider the second order ODE −u′′ = f ,
x ∈ I = [0, L], u(0) = u(L) = 0 f is a given function

If we are going to construct the solution out of the hat functions,
then we need to convert this from a differential equation into an
integral equation.

We introduce the variational formulation:



Solving a Differential Equation

We start by multiplying the ODE by a test function v which
vanished at the endpoints, and then integrating

Therefore we have:∫ L
0 fvdx = −

∫ L
0 u′′vdx =

∫ L
0 u′v ′dx − u′(L)v(L) + u′(0)v(0)

The two nonintegrable terms vanish, and we are left with,∫ L
0 fvdx =

∫ L
0 u′v ′dx , which looks almost identical to what we had

before.



Solving a Differential Equation

Remember that v is any function that vanishes at x = 0, L. The

good news is that there are plenty of piecewise linear functions with
that property, and the phi-hat functions just so happen to be in
that group, as long as we eliminate the hat functions on the ends.

Therefore, we have:∫ L
0 f φidx =

∫ L
0 u′φ′idx i = 1, 2, ..., n − 1



Solving a Differential Equation

u is the solution to the differential equation, so we are trying to
construct it from the hat functions. We replace u and u′ with uh
and u′h to signify that it is being constructed from the hat
functions.

That implies that uh =
∑n

j=0 αjφj and we can repeat the exact
same procedure as before to assemble the appropriate matrix and
vector.



Solving a Differential Equation

−(0.5 + 0.7x)T ′′ = 0.3x2,
2 < x < 8, T (2) = −1,T ′(8) = 0



The 2 Dimensional Case

For 2 dimensions, we need to figure out how to partition the x-y
plane
The answer is triangles:



The 2 Dimensional Case



The 2 Dimensional Case



Time Dependence



Time Dependence



Time Dependence


