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The downsides of the Riemann Integral

• The Riemann Integral only works with bounded functions

• Define f : [0, 1] −→ R

f (x) =

{
1 x ∈ Q
0 x /∈ Q

• When one uses the definition for Riemann Integrability we find L(f ,P, [0, 1]) = 0 and
U(f ,P, [0, 1]) = 1 which implies f (x) is not Riemann Integrable.

3 / 30



The downsides of the Riemann Integral

• The Riemann Integral only works with bounded functions

• Define f : [0, 1] −→ R

f (x) =

{
1 x ∈ Q
0 x /∈ Q

• When one uses the definition for Riemann Integrability we find L(f ,P, [0, 1]) = 0 and
U(f ,P, [0, 1]) = 1 which implies f (x) is not Riemann Integrable.

4 / 30



The downsides of the Riemann Integral

• The Riemann Integral only works with bounded functions

• Define f : [0, 1] −→ R

f (x) =

{
1 x ∈ Q
0 x /∈ Q

• When one uses the definition for Riemann Integrability we find L(f ,P, [0, 1]) = 0 and
U(f ,P, [0, 1]) = 1 which implies f (x) is not Riemann Integrable.

5 / 30



Length of Intervals

• How can we get the length of an interval?

• Definition: The length L(I) of an open interval I is defined by

L(I ) =


b-a if I = (a, b) for some a, b ∈ R with a ≤ b
0 if I = ∅
∞ if I = (−∞, a) or I = (a,∞) for some a ∈ R
∞ if I = (−∞,∞)
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Using length to define Outer Measure

Definition:

The outer measure of |A| of a set A ⊂ R is defined by

|A| = inf

{ ∞∑
k=1

L(Ik) : I1, I2, ... are open intervals such that A ⊂ ∪∞
k=1Ik

}
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Heine-Borel Theorem

Definition:

Suppose A ⊂ R then call the collection C of open subsets of R an open cover of A if A is
contained in the union of all the sets in C. C has a finite subcover of A if A is contained in a
finite list of sets in C.

Heine-Borel Theorem:

Every open cover of a bounded closed subset of R has a finite subcover.
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Important Properties of Outer Measure

• Countable subsets of R have outer measure 0!

• Outer Measure preserves order, i.e let
A and B be subsets of R such that A ⊂ B then |A| ≤ |B|

• Outer Measure is translation invariant! That is if t ∈ R and A ⊂ R then
t + A = { t + a : a ∈ A } then |t + A| = |A|

• There always exists disjoint subsets of A and B of R such that |A ∪ B| ≠ |A|+ |B|
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Applications of Outer Measure

• On a closed interval, a, b ∈ R , a ≤ b, then |[a, b]| = b − a. Done with Heine-Borel
Theorem.

• Every interval in R containing at least two distinct elements is uncountable.

• Originally shown by Georg Cantor, but with a very lofty proof, the proof for this is much
simpler.
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σ-Algebras

Definition: σ-Algebras

Let X be a set and S be a set of subsets of X. Then S us considered a σ-Algebra if:

• ∅ ∈ S
• if E ∈ S then X \ E ∈ S
• if E1,E2... is a sequence of events in S then ∪∞

k=1Ek ∈ S

σ-Algebras closed under countable intersection

Suppose S is a σ-Algebra on X. Then,

• X ∈ S
• if D,E ∈ S, then D ∪ E ∈ S and D ∩ E ∈ S and D \ E ∈ S
• if E1,E2, ... is a sequence of events in S then ∩∞

k=1Ek ∈ S
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Measurable Spaces

Definition: Measurable Spaces and Sets

• A measurable space is simply an ordered pair (X ,S) where X is a set and S is a
σ-Algebra on X.

• An event in S is called an S-measurable set
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Borel Sets

Smallest σ-algebra

If X is a set and A is a set of subsets of X, then the intersection of σ-algebras on X that
contain A is also a σ-algebra on X.

Definition: Borel Set

The smallest σ-algebra on R containing all open subsets of R is called the collection of Borel
subsets of R. Any element of this σ-algebra is called a Borel Set.

• A subset [−∞,∞] is called a Borel set

• Every closed subset of R is a Borel set since every closed subset of R is the complement
of an open subset of R

• Every countable subset of R is a Borel set, to see this let a set A = x1, x2, ... then
B = ∪∞

k=1{xk} is a Borel set since each {xk} is closed
• If f : R −→ R any set of points where f is continuous is the intersection of open sets and
thus a Borel set
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Inverses and their Properties

Definition: Inverse Images

If f : X −→ Y is a function and A ⊂ Y then the set f −1(A) is defined by,

f −1(A) = {x ∈ X : f (x) ∈ A}

Properties of Inverses

• Suppose f : X −→ Y and g : Y −→ W are functions, then

(g ◦ f )−1(A) = f −1(g−1(A)) for every A ⊂ W

• Suppose f : X −→ Y , then
• f −1(Y \ A) = X−1(A) for every A ⊂ Y
• f −1(∪A∈A(A)) = ∪A∈Af

−1(A) for every set A of subsets of Y)
• f −1(∩A∈A(A)) = ∩A∈Af

−1(A) for every set A of subsets of Y)
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Measurable Functions and their Conditions

Definition: Measurable Functions

Suppose (X ,S) is a measurable space then the function f : X −→ R is called S-measurable if
f −1(B) ∈ S for every Borel set B ∈ R

Definition: Borel Measurable Function

Suppose X ⊂ R, a function f : X −→ R is called Borel Measurable if f −1(B) is a Borel set for
every Borel set B ⊂ R

• Every continuous function is Borel measurable!
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Measures

Definition: Measure

Suppose X is a set and S is a σ-algebras on X. A measure on (X ,S) is a function
µ : S −→ [0,∞] such that µ(∅) = 0 and

µ(∪∞
k=1Ek) =

∞∑
k=1

µ(Ek)

for every disjoint sequence E1,E2, ... of sets in S
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Properties of Measure

Definition: Measure Space

A measure space is the ordered triple (X ,S, µ) where X is a set S is a σ-algebras on X, and µ
is a measure on (X ,S)

Properties of Measure

• Measure preserves order, (D ⊂ E ) then µ(D) ≤ µ(E )

• (X ,S, µ) is a measure space and E1,E2, ... ∈ S. Then, µ(∪∞
k=1Ek) ≤

∑∞
k=1 µ(Ek)

• µ(D ∪ E ) = µ(D) + µ(E )− µ(D ∩ E ), µ(D ∩ E ) ≤ ∞
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Connection Between Outer Measure and Lebesgue Measure

Outer Measure and Lebesgue Measure

Outer measure is a measure on (R,B) where B is a σ-algebra of Borel subsets of R

Definition: Lebesgue Measure

Lebesgue measure is the measure on (R,B) where B is the σ-algebra that assigns each Borel
set to its outer measure.

Definition: Lebesgue Measurable Set

A set A ⊂ R is called Lebesgue measurable if there exists a Borel set B ⊂ A such that
|A \ B| = 0 is the measure on (R,B) where B is the σ-algebra that assigns each Borel set to
its outer measure.
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Convergence of Measurable Functions

Definition: Pointwise and Uniform Convergence

Let X be a set with f1, f2, ... being a sequence of functions from X to R and f is a function
from X to R.
• The sequence f1, f2, ... converges pointwise on X to f if limk−→∞fk(x) = f (x)

• The sequence f1, f2, ... converges uniformly on X to f if for every ϵ > 0 there exists a
n ∈ Z+ such that |fk(x)− f (x)| < ϵ for all integers k ≥ n and all x ∈ X

Simple Functions and Approximations with them

• A function is simple if it takes only finitely many values
• We can approximate functions by simple functions!

• Let each fk be a simple S-measurable function
• |fk(x)| ≤ |fk+1(x)| ≤ |f (x)| for all k ∈ Z+ and all x ∈ X
• limk−→∞fk(x) = f (x) for every x ∈ X
• f1, f2, ... converges uniformly on X to f if f is bounded!
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Integration with respect to a Measure

Integral in terms of simple functions

Let (X ,S, µ) be a measure space and f : X −→ [0,∞] is S-measurable, then∫
fdµ = sup{

∫
sdµ : s simple0≤s≤f
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Properties of Integration

Suppose (X ,S, µ) is measure space and f , g : X −→ [0,∞] are S-measurable functions

• Integration preserves order! s.t f (x) ≤ g(x) for all x ∈ X then
∫
fdµ ≤

∫
gdµ

• Additivity,
∫
(f + g)dµ =

∫
fdµ+

∫
gdµ

• Can break function, X −→ [−∞,∞], into its positive and negative regions and take
difference to integrate real valued functions

• Homogeneous,
∫
cfdµ = c

∫
fdµ

• Absolute Value, |
∫
fdµ| =

∫
|f |dµ
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Probability Measures and Spaces

What is a probability measure?

• Suppose F is a σ-algebra on a set Ω, then a probability measure on (Ω,F) is a measure
P on (Ω,F) such that P(Ω) = 1

• Ω is called the sample space

• An event is an element of F
• Given an event A, P(A) is called the probability of A

• If P is the probability measure on (Ω,F) then (Ω,F ,P) is called the probability space
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Independence and Conditional Probability

Independent Events

Suppose (Ω,F) then (Ω,F ,P) is the probability space,

• Two events, A and B, are independent if P(A ∩ B) = P(A) · P(B)
• For more than two events, P(Ak1 ∪ Ak2 ∪ ...Akn) = P(Ak1)...P(Akn) for k1, ..., kn

Conditional Probability

Suppose (Ω,F ,P) is a probability space and B us ab event with P(B) > 0. Can define
PB : F −→ [0, 1] by

PB(A) = P(A|B) = P(A ∩ B)

P(B)

If A ∈ F , then PB(A) is called the conditional probability of A given B.
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Random Variables

How random is random?
• A random variable can be discrete or continuous, but in either case is a function that
maps from Ω −→ R

• A variable that depends on the outcome of a random process
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Probability Distribution and Distribution Function

Suppose (Ω,F ,P) is a probability space and X is a random variable.

Probability Distribution

The probability distribution of X is the probability measure PX defined on (R,B) by
PX (B) = P(X ∈ B) = P(X−1(B))

Distribution Function

The distribution function of X is the function X̃ = PX ((−∞, s]) = P(X ≤ s)
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Measure to define probability

Nice Properties

• Using measure we can define expectation, independence, variance and standard deviation
of random variables

• Everything we use already in probability! 27 / 30



Applications to Signal Filtering

• Measure is the foundation of stochastic calculus, Ito’s Formula, Stratonovich’s Integral,
and stochastic flow

• Can create filtering equations (Zakai) based on stochastic calculus

• Kalman-Bucy filtering, i.e continuous Kalman filter!

• What are the limitations of this filtering in this way?
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The End
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