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Two Arenas of Logic

There are two separate focuses within the study of logic: the logic
of formal languages, and the logic of natural languages. In this
presentation we will focus on the logic of formal languages, and in
particular we examine the language of propositional logic.

The logic of formal languages, often called mathematical logic is a
discipline of mathematics, while the logic of natural languages
instead lies closer to the domain of philosophy and linguistics.



An Outline

We begin by qualifying what constitutes letters and words in the
language of propositional logic, and then proceed to define a few
important related operations. With this we are able to express
what a truth assignment is for a propositional sentence, and using
truth assignments we define the truth table for a propositional
sentence. Finally we see how a more mathematical treatment of
logic allows for some nice formulas for truth tables of
generalizations of the disjunction and conjunction.



The Language of Propositional Calculus

The Language of Propositional Calculus includes a countable set of
propositional variables, sometimes called sentence letters, a
collection of logical connectives, as well as left and right
parentheses for readability.

Lpc :={Alli e NfU{~, AV, =, <1U{()}



Finite Sequences in £pc

We have decided on a set of letters for the language of
propositional calculus. But now we must decide on which words to
allow as grammatical. Propositional sentences will be certain finite
sequences with letters taken from £pc... but which? First a
definition.

x is a finite sequence on £pc : <= dmeN x:m — Lpc

And we write x = (x(0), ..., x(m — 1)) = (x0, ..., Xm—1)



Propositional Sentences in £pc

Now we can define propositional sentences: intuitively ¢ is a
propositional sentence if there is a way to "build it” from
propositional variables using the logical connectives!

¢ is a propositional sentence over £p¢c <= 3f = (¢, ...0m) such
that ¢, = ¢ and for all i < m either

> ¢i=(Aj), JEN
Gi =P Nk, Jk<i
Gi =iV bk, Jik<i
i =i = bk, ik <i
i =i bk, Sk <i
i =g, J<i
oi=(9;), Jj<i
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An example of a propositional sentence

Is the following string a propositional sentence? Why?
(— (A1 A2) A AL) v (A1 —(43))

How about
(—) A1Ar A ((



Derivation Tree

(ﬁ(A1 — A2) A A4) V(AL (4))

/\

A1 — Az N Ag AL € ~(4s)
A1 — A2 . o
A — A A3

Aq Az



Variables of a Propositional Sentence

Let ¢ be a propositional sentence. We define the variables operator
recursively. Var(< ) {A } Now suppose Var(¢) is defined
when the length (domam) of ¢ is less than m. Then we have one
of the following cases:

> ¢i = ¢ N\ P, Var(gb,-) = Var( ) U Var(gzﬁk)
> p; = ¢V ¢k, Var(¢;) = Var( ) U Var((ék)
> ¢ = ¢ — Pk, Var(¢,~) = Var(@) U Var(qﬁk)
> ¢ = ¢j < Ok, Var(¢,~) = Var(dy) U Var(¢>k)
> o = ¢;, Var(¢;) = Var(qu)

> i =(¢)), Var(;) = Var(¢))



Truth Assignment for a finite set of Variables

In order to talk about the truth of certain sentences in
propositional calculus, we define truth assignments for a given set
of variables. A truth assignment is simply a binary function with its
domain being a set of variables.

X is a truth assignment for {A;, ..., A} <= X:{A;,..., A} =2

Example: if X(A1) = 0,x(A2) = 1,X(A3) = 1,X(As) = 0, then X is
a truth assignment on {Aj, Az, A3, Ag}. This could assign meaning
to a propositional sentence like ((A1 A A3) — Ag) V Az



Basic Binary Operators

Now we define a few basic operators, these should agree with the
common notions used in truth tables and basic logical
constructions. All of these should be seen as functions from

{0,1}2 — {0,1}.
fA(x,y) =xy, HK(x,y)=sgn(x+y), f(x)=1-x

Try to think of a function to express f_,(x, y)!



Truth Tables

Mathematically, the truth table of a propositional sentence is a
binary valued function on the set of truth assignments for the
variables of that propositional sentence.

TT,:2Y(@) 2
We define the truth table function recursively, since it is defined for
propositional sentences which are themselves defined recursively.
> TTia)(X) =X(A)
> If ¢ = ¢10@¢y, for @ a binary connective, then
TTy(x) = fo( TTou (%l var(on): TToa(Klvar(s))

> 1f ¢ = ~1 then TTy(X) = £ ( Ty, (Rlvar())



Truth Table Example

Example: Calculate the Truth Table of ¢ = —=((Ag A A1) — A1)

We begin by observing Var(¢) = {Ao, A1}. This means there are
22 = 4 truth assignments we must calculate to fully calculate the
truth table of ¢. We can write them out explicitly, the usual
convention is to write the truth assignments out as in the table

A1 ‘ (AO /\Al) — A ‘ —|((A0 /\Al) — Al) ‘

below.
Ao A1 | Ao A
1 1 1 1
1 0 0 1
0 1 0 1
0 O 0 1

0

0
0
0



Tautologies and Contradictions

When the truth table for a propositional sentence is the constant
function 1, we call that propositional sentence a Tautology.
Similarly when the truth table for a propositional sentence is the
constant function 0, we call it a Contradiction.

For instance in the last slide we showed ¢ = —((Ap A A1) — A1) is
a contradiction by computation of its truth table.



The power of our binary functions and truth tables

The more mathematical scheme of definitions we have adopted
allows us to prove many facts about general propositional
sentences without computing individual truth tables as before. For
example: If ¢1 and ¢» are tautologies, prove ¢1 A ¢2 is a tautology.

TT¢1/\¢2 (?) = fa ( TT¢1 (?| Var(xl))a TT<252 (?| Var(x2) )>

= <TT¢1 (x] Var(x1)) (TT¢2 (x| Vaf(X2)>
-1



Repeated Conjunction and Disjunction

Let ¢; be a propositional sentence. We define recursively the
following two operations.

n+1

/0\¢,-=¢o, A i = (/\¢) A Gni1
i=0 i=0

i=0
n+1 n

\O/Qb;:d)o, \V o=\ 6i) v onix
i=0 i=0

i=0



Truth Tables of Repeated Conjunctions and Disjunctions

The decision to denote truth values by {0, 1} rather than {T, F}
will now become very useful. We derive the truth table for the
previously defined repeated conjunction and disjunction.

TTpri1 (%) = TTA2 g 6)nd0s1 (X)
a f/\(TT(/\ o i) (X’V‘?r Ai- o¢:)) TT¢n+1(X‘Var ¢,,+1))>

= (T o) ®vartAz60)) TTows Klvar(s, )
n+1

—- .= H TT¢,-(7’Var(¢i))
i=0



Continued

Similarly for repeated disjunctions, we apply the definition of
repeated disjunction, the definition of £, and activate the inductive
hypothesis.

TTVi"iol oF (Y) = TT(\/?:o ¢i)V¢n+1(Y)
=K ( TTovn g0 Klvar(vr g 60)s TTona (X] var(w)))

= sgn ( Ty o0 (Xvaryig en) + T T (X] Var(¢,,+1)))
n+1

— ... = sgn( Z TT¢; (Y‘Var(qﬁ;)))
i=0



Directed Reading Text

A Mathematical Introduction to Logic by Herbert Enderton



