An Easy¹ Proof of Quadratic Reciprocity Using Algebraic Number Theory

Dillon Snyder

University of Connecticut, Storrs

December 15, 2022

Algebraic Integers: An element $\alpha \in \mathbb{C}$ is an algebraic integer if there exists a monic polynomial $f(x) \in \mathbb{Z}[x]$ where $f(\alpha) = 0$.

Algebraic Integers: An element $\alpha \in \mathbb{C}$ is an algebraic integer if there exists a monic polynomial $f(x) \in \mathbb{Z}[x]$ where $f(\alpha) = 0$.

- \bullet $\sqrt{2}$ is an algebraic integer where $f(x)=x^2-2$ is the minimum polynomial
- $\frac{1+\sqrt{5}}{2}$ is an algebraic integer where $f(x)=x^2-x-1$ is the minimum polynomial
- $\frac{1}{\sqrt{6}}$ is not an algebraic integer (see $f(x) = 6x^2 1$ for intuition)

Algebraic Integers: An element $\alpha \in \mathbb{C}$ is an algebraic integer if there exists a monic polynomial $f(x) \in \mathbb{Z}[x]$ where $f(\alpha) = 0$.

- \bullet $\sqrt{2}$ is an algebraic integer where $f(x)=x^2-2$ is the minimum polynomial
- \bullet $\frac{1+\sqrt{5}}{2}$ is an algebraic integer where $f(x)=x^2-x-1$ is the minimum polynomial
- $\frac{1}{\sqrt{6}}$ is not an algebraic integer (see $f(x)=6x^2-1$ for intuition)

Ring of Integers: For K, a finite extension of \mathbb{Q} , $R \subset K$ is the set of all the elements in K that are algebraic integers.

Algebraic Integers: An element $\alpha \in \mathbb{C}$ is an algebraic integer if there exists a monic polynomial $f(x) \in \mathbb{Z}[x]$ where $f(\alpha) = 0$.

- \bullet $\sqrt{2}$ is an algebraic integer where $f(x)=x^2-2$ is the minimum polynomial
- $\frac{1+\sqrt{5}}{2}$ is an algebraic integer where $f(x)=x^2-x-1$ is the minimum polynomial
- $\frac{1}{\sqrt{6}}$ is not an algebraic integer (see $f(x)=6x^2-1$ for intuition)

Ring of Integers: For K, a finite extension of \mathbb{Q} , $R \subset K$ is the set of all the elements in K that are algebraic integers.

For
$$K = \mathbb{Q}(\sqrt{d})$$
 where d is square-free, $R = \begin{cases} \mathbb{Z}[\sqrt{d}] & \text{if } d \not\equiv 1 \bmod 4 \\ \mathbb{Z}[\frac{1+\sqrt{d}}{2}] & \text{if } d \equiv 1 \bmod 4. \end{cases}$

Prime Ideal: An ideal $P \subset R$ is prime if R/P is an integral domain.

Prime Ideal: An ideal $P \subset R$ is prime if R/P is an integral domain. In $\mathbb{Z}[i]$, (1+i) is prime because $\mathbb{Z}[i]/(1+i) \cong \mathbb{Z}_2$ which is a field.

Prime Ideal: An ideal $P \subset R$ is prime if R/P is an integral domain. In $\mathbb{Z}[i]$, (1+i) is prime because $\mathbb{Z}[i]/(1+i) \cong \mathbb{Z}_2$ which is a field.

Prime Factorization: Ideals in R factor uniquely into prime ideals.

Prime Ideal: An ideal $P \subset R$ is prime if R/P is an integral domain. In $\mathbb{Z}[i]$, (1+i) is prime because $\mathbb{Z}[i]/(1+i) \cong \mathbb{Z}_2$ which is a field.

Prime Factorization: Ideals in R factor uniquely into prime ideals. In $\mathbb{Z}[i]$, (5) = (1+2i)(1-2i).

Prime Ideal: An ideal $P \subset R$ is prime if R/P is an integral domain. In $\mathbb{Z}[i]$, (1+i) is prime because $\mathbb{Z}[i]/(1+i) \cong \mathbb{Z}_2$ which is a field.

Prime Factorization: Ideals in R factor uniquely into prime ideals. In $\mathbb{Z}[i]$, (5) = (1+2i)(1-2i). In $\mathbb{Z}[\sqrt{10}]$,

- $(13) = (13, \sqrt{10} + 6)(13, \sqrt{10} 6)$
- $(2) = (2, \sqrt{10})^2$
- ullet (7) remains prime

Prime Ideal: An ideal $P \subset R$ is prime if R/P is an integral domain. In $\mathbb{Z}[i]$, (1+i) is prime because $\mathbb{Z}[i]/(1+i) \cong \mathbb{Z}_2$ which is a field.

Prime Factorization: Ideals in R factor uniquely into prime ideals. In $\mathbb{Z}[i]$, (5) = (1+2i)(1-2i).

In
$$\mathbb{Z}[\sqrt{10}]$$
,

- $(13) = (13, \sqrt{10} + 6)(13, \sqrt{10} 6)$
- $(2) = (2, \sqrt{10})^2$
- (7) remains prime

Prime Splitting: For two rings of integers $R \subset S$, primes in R may split into prime ideals in S.

Theorem (Dedekind–Kummer)

If $R = \mathbb{Z}[\alpha]$, f(x) is the minimal polynomial for α over \mathbb{Z} , and

$$f(x) = g_1(x)g_2(x)\cdots g_r(x) \bmod p$$

for some prime $p \in \mathbb{Z}$ where $g_i(x)$ are distinct monic irreducible polynomials, then

$$(p) = (p, g_1(\alpha))(p, g_2(\alpha)) \cdots (p, g_r(\alpha))$$

where $(p, g_i(\alpha))$ are distinct prime ideals.

Example

For $\mathbb{Z}[\sqrt{10}]$,

$$x^2 - 10 = (x+6)(x-6) \mod 13$$

so

$$(13) = (13, \sqrt{10} + 6)(13, \sqrt{10} - 6).$$

Corollary

Let d be a square-free integer with $d \equiv 1 \mod 4$ and $q \in \mathbb{Z}$ be an odd prime, $q \nmid d$. With R being the ring of integers of $\mathbb{Q}(\sqrt{d})$, we have

$$2R = \begin{cases} \left(2, \frac{1+\sqrt{d}}{2}\right) \left(2, \frac{1-\sqrt{d}}{2}\right) & \text{if } d \equiv 1 \bmod 8 \\ \text{prime} & \text{if } d \equiv 5 \bmod 8 \end{cases}$$

and

$$qR = \begin{cases} (q, n + \sqrt{d})(q, n - \sqrt{d}) & \text{if } d \equiv n^2 \bmod q \\ \text{prime} & \text{if } d \text{ is not a square } \bmod q. \end{cases}$$

Example

Since $10 \equiv 14^2 \mod 31$, we have in $\mathbb{Z}[\sqrt{10}]$

$$(31) = (31, 14 + \sqrt{10})(31, 14 - \sqrt{10})$$

Legendre Symbol

Definition

Let p be an odd prime in \mathbb{Z} . For $n \in \mathbb{Z}$ where $p \nmid n$, define the Legendre Symbol

$$\left(\frac{n}{p}\right) = \begin{cases} 1 & \text{if } n \text{ is a square } \text{mod } p \\ -1 & \text{otherwise.} \end{cases}$$

Examples

- $\left(\frac{1}{3}\right) = 1$ because $1 \equiv 1^2 \mod 3$
- $\binom{2}{7} = 1$ because $2 \equiv 3^2 \mod 7$
- $\left(\frac{3}{11}\right) = 1$ because $3 \equiv 5^2 \mod 11$
- $(\frac{17}{7}) = -1$ because $17 \equiv 3 \mod 7$ and is not a square
- $\left(\frac{-8}{5}\right) = -1$ because $-8 \equiv 3 \mod 5$ and is not a square

Properties

•
$$(\frac{1}{p}) = 1$$

- If $m \equiv n \bmod p$, then $(\frac{m}{p}) = (\frac{n}{p})$
- $\bullet \ (\frac{mn}{p}) = (\frac{m}{p})(\frac{n}{p})$
- If $q \equiv 1 \mod 4$, then $\left(\frac{-1}{q}\right) = 1$
- If $q \equiv 3 \mod 4$, then $(\frac{-1}{q}) = -1$

Quadratic Reciprocity

Theorem

Let p be an odd prime in \mathbb{Z} . Then for odd primes q such that $q \neq p$, then

$$\left(\frac{q}{p}\right) = \begin{cases} \left(\frac{p}{q}\right) & \text{if } p \text{ or } q \equiv 1 \bmod 4 \\ -\left(\frac{p}{q}\right) & \text{if } p \equiv q \equiv 3 \bmod 4 \end{cases}$$

and

Applications

Examples

- $(\frac{2}{137}) = 1$ because $137 \equiv 1 \mod 8$. Note: $2 \equiv 31^2 \mod 137$
- $\left(\frac{5}{11}\right) = 1$ because $\left(\frac{5}{11}\right) = \left(\frac{11}{5}\right) = \left(\frac{1}{5}\right) = 1$ since $5 \equiv 1 \bmod 4$. Note: $5 \equiv 4^2 \bmod 11$
- $(\frac{2}{41851}) = -1$ because $41851 \equiv 3 \mod 8$
- $\left(\frac{21}{83}\right) = 1$ because $\left(\frac{21}{83}\right) = \left(\frac{3}{83}\right)\left(\frac{7}{83}\right) = 1$ since $7 \equiv 83 \equiv 3 \mod 4$. Note: $21 \equiv 41^2 \mod 83$
- $\left(\frac{10}{29}\right)=-1$ because $\left(\frac{10}{29}\right)=\left(\frac{2}{29}\right)\left(\frac{5}{29}\right)=-\left(\frac{29}{5}\right)=-\left(\frac{4}{5}\right)=-1$ because $29\equiv -3 \bmod 8$ and $5\equiv 1 \bmod 4$

Proof of Quadratic Reciprocity

Lemma

Let p be an odd prime. Set

$$p^* = \pm p$$
 so that $p^* \equiv 1 \mod 4$.

For any odd primes $q \neq p$, in the ring of integers of $\mathbb{Q}(\sqrt{p^*})$, we have

$$\left[\left(\frac{q}{p} \right) = 1 \iff (q) = \mathfrak{p}_1 \mathfrak{p}_2 \text{ where } \mathfrak{p}_1 \neq \mathfrak{p}_2 \right]$$

 $\left(\frac{q}{p}\right) = -1$ otherwise.

q is any odd prime

$$\boxed{ \left(\frac{q}{p} \right) = 1 \iff (q) = \mathfrak{p}_1 \mathfrak{p}_2 \text{ where } \mathfrak{p}_1 \neq \mathfrak{p}_2 }$$

$$\boxed{ \left(\frac{q}{p} \right) = -1 \text{ otherwise.} }$$

Recall from the Corollary:

$$\mathsf{qR} = \begin{cases} (q, n + \sqrt{p^*})(q, n - \sqrt{p^*}) & \text{when } p^* \equiv n^2 \bmod q \\ \mathsf{prime} & \text{when } p^* \not\equiv n^2 \bmod q \end{cases}$$

\overline{q} is any odd prime

$$\boxed{ (\frac{q}{p}) = 1 \iff (q) = \mathfrak{p}_1 \mathfrak{p}_2 \text{ where } \mathfrak{p}_1 \neq \mathfrak{p}_2 }$$

$$\boxed{ (\frac{q}{p}) = -1 \text{ otherwise.} }$$

Recall from the Corollary:

$$\mathsf{qR} = \begin{cases} (q, n + \sqrt{p^*})(q, n - \sqrt{p^*}) & \text{when } p^* \equiv n^2 \bmod q \\ \mathsf{prime} & \text{when } p^* \not\equiv n^2 \bmod q \end{cases}$$

$$\begin{pmatrix} \frac{q}{p} \end{pmatrix} = \begin{pmatrix} \frac{p^*}{q} \end{pmatrix} \iff \begin{pmatrix} \frac{q}{p} \end{pmatrix} = \begin{cases} \begin{pmatrix} \frac{p}{q} \end{pmatrix} & \text{if } p \equiv 1 \bmod 4 \\ \begin{pmatrix} \frac{-p}{q} \end{pmatrix} & \text{if } p \equiv 3 \bmod 4 \end{cases}$$

q is any odd prime

$$\boxed{ (\frac{q}{p}) = 1 \iff (q) = \mathfrak{p}_1 \mathfrak{p}_2 \text{ where } \mathfrak{p}_1 \neq \mathfrak{p}_2 }$$

$$\boxed{ (\frac{q}{p}) = -1 \text{ otherwise.} }$$

Recall from the Corollary:

$$\begin{split} \operatorname{qR} &= \begin{cases} (q, n + \sqrt{p^*})(q, n - \sqrt{p^*}) & \text{when } p^* \equiv n^2 \bmod q \\ \operatorname{prime} & \text{when } p^* \not\equiv n^2 \bmod q \end{cases} \\ \begin{pmatrix} \frac{q}{p} \end{pmatrix} &= \begin{pmatrix} \frac{p^*}{q} \end{pmatrix} \iff \begin{pmatrix} \frac{q}{p} \end{pmatrix} &= \begin{cases} \begin{pmatrix} \frac{p}{q} \end{pmatrix} & \text{if } p \equiv 1 \bmod 4 \\ \begin{pmatrix} \frac{-p}{q} \end{pmatrix} & \text{if } p \equiv 3 \bmod 4 \end{cases} \\ \begin{pmatrix} \frac{-p}{q} \end{pmatrix} &= \begin{pmatrix} \frac{-1}{q} \end{pmatrix} \begin{pmatrix} \frac{p}{q} \end{pmatrix} &= \begin{cases} \begin{pmatrix} \frac{p}{q} \end{pmatrix} & \text{if } q \equiv 1 \bmod 4 \\ -\begin{pmatrix} \frac{p}{q} \end{pmatrix} & \text{if } q \equiv 3 \bmod 4 \end{cases} \end{split}$$

Dillon Snyder (UConn)

q is any odd prime

$$\boxed{ \left(\frac{q}{p} \right) = 1 \iff (q) = \mathfrak{p}_1 \mathfrak{p}_2 \text{ where } \mathfrak{p}_1 \neq \mathfrak{p}_2 }$$

$$\boxed{ \left(\frac{q}{p} \right) = -1 \text{ otherwise.} }$$

Recall from the Corollary:

$$\begin{split} \operatorname{qR} &= \begin{cases} (q, n + \sqrt{p^*})(q, n - \sqrt{p^*}) & \text{when } p^* \equiv n^2 \bmod q \\ \operatorname{prime} & \text{when } p^* \not\equiv n^2 \bmod q \end{cases} \\ \begin{pmatrix} \frac{q}{p} \end{pmatrix} &= \begin{pmatrix} \frac{p^*}{q} \end{pmatrix} \iff \begin{pmatrix} \frac{q}{p} \end{pmatrix} = \begin{cases} \begin{pmatrix} \frac{p}{q} \end{pmatrix} & \text{if } p \equiv 1 \bmod 4 \\ \begin{pmatrix} \frac{-p}{q} \end{pmatrix} & \text{if } p \equiv 3 \bmod 4 \end{cases} \\ \begin{pmatrix} \frac{-p}{q} \end{pmatrix} &= \begin{pmatrix} \frac{-1}{q} \end{pmatrix} \begin{pmatrix} \frac{p}{q} \end{pmatrix} = \begin{cases} \begin{pmatrix} \frac{p}{q} \end{pmatrix} & \text{if } q \equiv 1 \bmod 4 \\ -\begin{pmatrix} \frac{p}{q} \end{pmatrix} & \text{if } q \equiv 3 \bmod 4 \end{cases} \\ \implies \begin{pmatrix} \frac{q}{p} \end{pmatrix} &= \begin{cases} \begin{pmatrix} \frac{p}{q} \end{pmatrix} & \text{if } p \text{ or } q \equiv 1 \bmod 4 \\ -\begin{pmatrix} \frac{p}{q} \end{pmatrix} & \text{if } p \equiv q \equiv 3 \bmod 4. \end{cases} \end{split}$$

Dillon Snyder (UConn)

q=2

$$\boxed{ \left(\frac{q}{p} \right) = 1 \iff (q) = \mathfrak{p}_1 \mathfrak{p}_2 \text{ where } \mathfrak{p}_1 \neq \mathfrak{p}_2 }$$

$$\boxed{ \left(\frac{q}{p} \right) = -1 \text{ otherwise.} }$$

Recall from the Corollary:

$$2R = \begin{cases} \left(2, \frac{1+\sqrt{p^*}}{2}\right) \left(2, \frac{1-\sqrt{p^*}}{2}\right) & \text{when } p^* \equiv 1 \bmod 8 \\ \text{prime} & \text{when } p^* \equiv 5 \bmod 8 \end{cases}$$

$$\boxed{ \left(\frac{q}{p} \right) = 1 \iff (q) = \mathfrak{p}_1 \mathfrak{p}_2 \text{ where } \mathfrak{p}_1 \neq \mathfrak{p}_2 }$$

$$\boxed{ \left(\frac{q}{p} \right) = -1 \text{ otherwise.} }$$

Recall from the Corollary:

$$2R = \begin{cases} \left(2, \frac{1+\sqrt{p^*}}{2}\right) \left(2, \frac{1-\sqrt{p^*}}{2}\right) & \text{when } p^* \equiv 1 \bmod 8 \\ \text{prime} & \text{when } p^* \equiv 5 \bmod 8 \end{cases}$$

$$\iff$$
 $\left(\frac{2}{p}\right) = 1 \text{ when } p^* \equiv 1 \mod 8 \text{ and } \left(\frac{2}{p}\right) = -1 \text{ when } p^* \equiv 5 \mod 8.$

Thus,
$$\left(\frac{2}{p}\right) = \begin{cases} 1 & \text{if } p \equiv \pm 1 \mod 8 \\ -1 & \text{if } p \equiv \pm 3 \mod 8. \end{cases}$$

Dillon Snyder (UConn) Quadratic Reciprocity December 15, 2022

References

K. Conrad, (2020) Algebraic Number Theory

D. Marcus, (2018) Number Fields Springer

13 / 13